Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor

نویسندگان

  • Helin Wei
  • Sihang Wei
  • Weifeng Tian
  • Daming Zhu
  • Yuhao Liu
  • Lili Yuan
  • Xin Li
چکیده

Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowir...

متن کامل

Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode.

A sandwich-structured flexible supercapacitor electrode has been developed based on MnO2 nanonest (MNN) modified ionic liquid (IL) functionalized graphene paper (GP), which is fabricated by functionalizing graphene nanosheets with an amine-terminated IL (i.e., 1-(3-aminopropyl)-3-methylimidazolium bromide) to form freestanding IL functionalized GP (IL-GP), and then modifying IL-GP with a unique...

متن کامل

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet bee...

متن کامل

Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.

We report mechanically robust, electrically conductive, free-standing, and transparent hybrid nanomembranes made of densified carbon nanotube sheets that were coated with poly(3,4-ethylenedioxythiophene) using vapor phase polymerization and their performance as supercapacitors. The hybrid nanomembranes with thickness of ~66 nm and low areal density of ~15 μg/cm(2)exhibited high mechanical stren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014